• Mathematics
    VectorsMatricesVector SpaceAlgebraCalculusLogicAnalytic GeometryStatistics & ProbabilityGeometrySpecial Functions
    Physics
    MechanicsUnits & Constants
    Electronics
    Circuits
    Computer Science
    EncodingComputerLanguages
    Machine Learning
    ClusteringOptimizationRegressionKernels
    AI
    Neural Network
    Finance
    OptionsFixed IncomeMarket Analysis
    Help
    Contact usIndexSearchVersion history
    Practice Quiz
    LoginUser
  • Machine Learning
    Kernels: RBF kernel
    • Clustering
      • Optimization
        • Regression
          • Kernels
            • RBF kernel
          Radial Basis Function Kernel

          Given two data samples (vectors) x1 ∈ ℝn and x2 ∈ ℝn , and a non-zero parameter σ, radial basis function kernel   K ( x1, x2 )   , or RBF kernel or Gaussian RBF kernel,
          is defined as:     K (x1, x2) = exp ( - ‖x1 - x2‖22σ2 )    , where ‖x1 - x2‖ is the Euclidean distance between x1 and x2 . Alternatively, if we use parameter γ = 12σ2   , we can
          define:     K (x1, x2) = e - γ‖x1-x2‖2
          If we are given data samples xi , i=1,m, as rows of a ℝm×n matrix X, then we can calculate m×m matrix K of RBF distances (differences) K (xi, xj) between the ith and
          the jth row of a matrix X. Given that K (xi, xj) = K (xj, xi) and K (xi, xi) = 1 , we are returning only the upper triangle of K as a result.

          Please Note:

          • All values are calculated with the precision of 10-15, but are displayed with the precision of 10-9.
          • Empty cell will be defaulted to value 0
          • If uploading values for x1 and x2 from a file, file must be an ASCII file. Values for x1 must be in the first row of the file, and the values for the x2
            must be in the second row of the file. The individual numbers in the row must be separated by either comma ( , ), semicolon ( ; ) or pipe ( | ) character.
          Please specify one of the parameters σ or γ:
          σ =
          γ =(   12σ2   )
          Number of Data Samples:
          Data Samples:
          12345
          x1
          x2
          Result:



          See Also:     Softmax & LogSumExp functions